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Abstract. We propose a new method of series analysis in which the available series 
coefficients are fitted to an algebraic equation. Such a proposal restricts solutions to 
have algebraic singularities with rational critical exponents. The advantage of the 
method over the method of differential approximants is that in those cases where the 
two methods are exact, the algebraic approximant method usually (though not in- 
variably) requires far fewer series coefficients for its exact specification, and hence dis- 
covery. The method is therefore potentially valuable in the study of two-dimensional 
critical systems in particular. 

I n  1970, a method of series analysis was developed by Guttmann and Joyce [l]. The 
method was subsequently extended by others [2] and became known variously as the 
recurrence relation method, the method of integral approximants, and as the method 
of differential approximants (DA), which by now is the generally accepted title. It has 
become arguably the principal method of series analysis for lattice statistics models, 
and has been generalized by Fisher and co-workers to  handle multivariate functions, 
in which form it  is known as the method of partial differential approximants (PDA) [3]. 
The method was inspired by what were the only known exact solutions a t  that  time, 
the specific heat and order parameter of the zero-field two-dimensional Ising model, 
following a suggestion of Sykes (private communication) that  the recurrence relation 
satisfied by the Onsager solution would be a worthy object of study. 

In this method, the available series coefficients are used to  define a linear differ- 
ential equation with polynomial coefficients. The differential equation may be homo- 
geneous or inhomogeneous. Details and examples of the method are given in a recent 
review [4]. 

In the intervening twenty years, a large number of models have been solved, many 
by Baxter and co-workers [5]. Many of these do not obviously satisfy the family of 
differential equations that underlie the DA method. Our initial analysis indicates that 
the underlying family of equations in most of these cases is an algebraic equation of 
the form 

k 

m=O 

where the P,,,(.) are polynomials, and I(.) is the solution of the model system. 
If the degree of the polynomial Pn,(x) is cyn2, we denote the algebraic equation by 
[ak, ak-l, . . . , a l ,  ao].  The properties of such algebraic equations are less well known 
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than are the properties of the corresponding differential equation, in which the mth 
power of f(z) is replaced by the mth derivative of f(z).  It is the latter differential 
equation that is satisfied by DA. 

We have developed a method of series analysis based on the above algebraic equa- 
tion. The idea is the following: one has the first 10-100 terms of the power series 
expansion of f(z). For each order of the algebraic equation, one systematically in- 
creases the degrees of the polynomials Pm(z) ,  demanding term by term agreement 
with the coefficients of the formal expansion of (1). It can be shown that this is suffi- 
cient for uniqueness up to  a constant multiple. The situation is analogous to  ordinary 
Pad6 approximants, t o  which indeed (1) reduces in the case k = 1. One then analyses 
the resulting algebraic equation in order to  determine the critical points and critical 
exponents. The case k = 2 has also been discussed previously by Schafer [6] ,  who 
called them quadratic Pad6 approximants. 

The method is in some sense more restrictive than the DA method, as it can only 
yield rational critical exponents. For k = 1, only poles and zeros can be simulated. 
For k = 2,  exponents involving half-integral powers can be obtained as well, with more 
complicated powers being obtained for higher values of k. However, as most exactly 
solved models have rational exponents, this is less of a restriction than a development 
of a method particularly appropriate to the study of such models. 

With this method, we hope to  provide a uniform classification of as many exactly 
solved models as possible, and, of perhaps greater significance, to  search for solutions of 
previously unsolved models. The classification scheme proposed could include systems 
that are not classifiable within the framework of conformal field theory, such as the 
cliiral Potts model. 

Those familiar with the theory of such algebraic equations will be aware that any 
such kth-order algebraic equation satisfies a homogeneous differential equation with 
polynomial coefficients of order k, or an inhomogeneous differential equation of the 
same type of order (k - 1). At first sight then it might appear that  the proposed 
method offers no more than the existing differential approximant method. As a math- 
ematical statement, this view is correct. As a method of series analysis, however, 
this view is quite misleading for the following reason: in general we have only a fi- 
nite number of series coefficients to work with. Thus we seek that representation of 
the solution that is the most economzcaf in terms of the number of series coefficients 
needed for its specification. This is usually the algebraic equation representation. As 
an example we note that the magnetization of the triangular lattice king model with 
pure triplet interactions [7] satisfies an algebraic equation of type [l, 1, 4, O , O ] ,  while 
the corresponding homogeneous differential equation is of type [ 5 , 4 , 3 , 2 ] .  (The nota- 
tion used here is analogous to that used for the algebraic equations-the mth entry 
refers to  the degree of the polynomial mult,iplying the (k - m + 1)th derivative. The 
algebraic equation thus requires 5 series coefficients for its discovery, while 17 series 
coefficients are needed to  find the corresponding differential equation. To show that 
this is generally (though not invariably) true, we note that Hunter and Baker [2] have 
shown that if a function f (z )  is the solution of a quadratic algebraic equation 

P f ’ + Q f  + R =  0 
where P ,  Q and R are polynomials in I ,  then f ( x )  also satisfies the first-order inho- 
mogeneous differential equation, 
( P Q 2 - 4 P 2 R ) f ’ ( ~ ) + ( 2 P 3 R ’ - P Q Q ’ +  P’Q’ -2PP’R) f ( z )  

+ (P‘QR - 2PQ’R + PQR’) = 0.  
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If P ,  Q and R are all of the same degree, n say, the polynomials multiplying the 
derivatives are of degree 371, 3n - 1 and 3n - 1 respectively (ignoring the possibility 
of factorizations or cancellations). Thus three times as many series coefficients are re- 
quired t o  determine the differential equation representation from the series coefficients 
as are required to  determine the algebraic equation representation. This result can be 
generalized. Let the algebraic equation (1) be written in the form 

which defines f implicitly as a function of z (or vice versa). The elimination of f 
between (2) and 

gives a polynomial, D ( z )  called the discriminant. It can be shown [8] that  the homo- 
geneous differential equation satisfied by f (2) is of the general form, 

dmf  + . . . + Q D2- d 2 f  + Q 1 D z  d f  + Q o f  = 0 
QmD” d2’n ’ dz2  

where the Q, are polynomials in I. It is clear that  unless there are fortuitous can- 
cellations, there is a large redundancy in the differential equation representation as 
successive powers of the same polynomial, that is D ( z ) ,  appear in each coefficient. A 
similar form holds for the inhomogeneous differential equation. The series coefficients 
used in fitting to  a DA are therefore wasted on the higher powers of the discriminant. 
As an example, the mean number density p,  of the hard hexagon model [9] satisfies 
the algebraic equation 

3(1 - 112 - 2’)p4 - ( 1  - 662 - l lr2)p3 - 152(3+ z)p2 + 3r(4 + 3z)p - z ( 1  + 22) = 0 

where t is the reciprocal activity. The polynomial coefficients of the corresponding 
differential equation are 

P ~ ( z )  = 40(-50 - 2042 - 34622’ + 2 1 9 9 9 ~ ~  + 3 4 6 2 ~ ~  - 2 0 4 ~ ~  + 5 0 . ~ ~ )  

P 1 ( f )  = 40(-68 + 9262 + 9 7 6 8 ~ ~  - 5 2 4 1 9 ~ ~  - 1 4 9 9 5 2 ~ ~  + 3 2 3 9 4 ~ ~  
- 9 5 2 9 1 ~ ~  - 1 7 9 5 4 ~ ~  - 558.8 + 1 1 ~ ~ )  

P?(z)  = 4R(z)(-30 + 21942 + 265262’ - 4 9 3 7 7 4 ~ ~  + 5 2 4 0 5 ~ ~  - 4 1 5 3 4 0 ~ ~  
- 2 7 1 4 1 7 ~ ~  - 1 6 4 7 3 ~ ~  + 3522’) 

P~(z) = 36zR(t)’(6 + 62 - 36202’ + 1 6 0 0 ~ ~  - 6630r4 - 1013z5 + 2 2 ~ ~ )  

P4(2) = 9 t ’ R ( ~ ) ~ ( - 6  - 1842 + 1202’ - 504z3 + llr4) 

where R ( z )  = - 1 + 1 1 z + z 2 .  The algebraic equation is a [2,2,2,2,2] equation, requiring 
14 coefficients, whilst the differential equation is a [12,11,10,9,6] equation requiring 52 
coefficients. 

Our method involves systematically fitting algebraic equations of specified order to  
existing series expansions of solved and unsolved problems. The algebraic equation in 
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each case can be analysed to  produce estimates of the critical parameters and predic- 
tions of subsequent series coefficients. In principle, this parallels work done previously 
in the development of the differential approximant method. However the theory of 
algebraic equations is less widely known than is the corresponding theory of ordinary 
differential equations. Accordingly, considerable work is still needed to  find, or de- 
velop, suitably rapid algorithms for obtaining the discriminant of the multivariable 
polynomials that  arise, and the subsequent analysis to  predict the critical exponent. 
The possibility of introducing constraints corresponding to  known critical points and 
exponents will also be considered. 

As an example of classifying known solutions, our preliminary work has shown 
that the problem of convex polygons [lo] satisfies a second-order algebraic equation 
of size [4,7, lo]. We have also solved the problem of row-convex polygons [ll], which 
had not previously been solved, except implicitly [12]. The solution satisfies (1) with 
L = 4, and is given by a [3,4,5,6,6] algebraic equation. 

For an algebraic equation of the form ( l ) ,  one must first decide on the order 
of the equation. All values of L > 1 could be chosen, but bearing in mind that 
this method is likely to be most useful in the situation where one has a rational 
exponent, the exponent may be known or conjectured. If it is believed that  the 
exponent corresponds to a square root branch point, then a quadratic, or quartic, or 
quadratic in f(z)’, is an appropriate algebraic equation. Similarly, an exponent of 
1/9 dictates a ninth-order algebraic equation, or a cubic in f ( ~ ) ~ .  Once the order 
is decided upon, our procedure is simply to  increase the degree of the polynomials 
until one runs out of series coefficients. At each stage, the system of equations that 
must be solved to  determine the polynomial coefficients is linear. If an exact algebraic 
equation is ‘discovered’ by this process, the coefficients suddenly become integral or 
rational. Increasing the degrees of the polynomial beyond the minimum required to 
specify the exact solution does not change this observation. Tha t  is to say, once an 
exact representation is found, the approximant ‘locks in’ to that representation, and 
higher degree polynomial coefficients are found to be zero (or numerically very small). 

Of course the discovery of such an approximant does not constitute a rigorous 
derivation of the result, but if one obtains an algebraic equation that reproduces all 
known series coefficients (including many not used in the derivation of the approxima- 
tion) and produces the exact critical point(s) and exponents (if known), the likelihood 
that the conjecture is wrong is infinitesimally small. Further, once the solution has 
been conjectured, it should be far easier to find the exact solution by traditional 
mathematical methods, as we were able to  do for the row-convex polygon problem 

The next step is the analysis of the approximant in order to find the critical point 
and critical exponent. Consider (1) for some fixed numerical value of E .  Then we just 
have a polynomial of order L with real coefficients which thus has in general IC roots 
f i ,  f2, . . . , fk. AS E changes, each of the f i  change. Thus (1) gives rise to  12 functions 
of E ,  that is f,(z), i = 1,2,.  . . , 8 .  These are the k elements or branches of f (z ) .  If,  
for any given E ,  all the branches are distinct and finite, then E is a regular point, 
otherwise the point is called an exceptional point. Exceptional points may be either 
regular or singular. The exceptional points arise from three sources (i) the roots of 
Pk(z) = 0 which correspond to one or more of the the fi being infinite (these are 
always singular points), (ii) the roots of D ( E )  = 0 which are points where more than 
two branches o f f  have the same value (these are not necessarily singular points), and 
(iii) the point a t  infinity may be singular. 

[111. 
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The critical exponent is related to the cyclic structure of the branches in the 
neighbourhood of the critical point 2,. First consider an exceptional point derived 
from case (ii). Without loss of generality the point can be shifted to  the origin, so 
x = 0 is the exceptional point. Now, suppose n of the roots of 

G(f,O) = 0 

are equal, where 1 < n 5 k. Let f = 0 be the value of the root ( iff  # 0 then shift it to 
the origin). Thus in the neighbourhood of z = 0 we haven roots fl(z), fz(z) ,  . . . , f,(z) 
which tend to zero as x tends to zero. These functions are defined on a punctured disc 
and are analytic in the neighbourhood of any point on the disc, but not necessarily 
single-valued. (The radius of the disc is made small enough so that t = 0 is the only 
singular point on the disc.) 

Consider a circular path C in the disc, centred on the puncture t = 0. Consider 
f l (x)  and move along C starting at  some point on C, then upon returning to the 
starting point fl(t) may return to its original value or may equal another element 
fz(t), if upon repeating the cycle the value of f2(x) returns to the original value f l ( z )  
then we have a two-cycle. It follows that fl(t2) must be a single valued function of z 
and thus possess a power series expansion in t ,  that is 

which, for each solution of z2  = z, gives an expansion of the form 

03 

f i ( X )  = C m P ' 2 .  

m=1 

Thus we have an expansion in fractional powers of x. This is an example of a Puiseus 
expansion. In the general case, K of tlie branches may be permuted upon describing 
C n times, giving rise to a n-cycle. Similarly, f l ( z " )  is single valued and possesses a 
power series expansion in z which, in 2, is of the form 

for each solution of z" = t. The remaining k - n roots are considered in the same way. 
Thus we obtain a set of cycles { t c l ,  n2, . . . , K , , } ,  with tcl + tcz + . . . + K,, = k. If tci = 1 
then the branch is regular and if ni > 1 the branches form an 'algebriac element' of 

It is clear then that if f(t) is some thermodynamic function which goes to zero at 
f (3). 
E, (the physical singularity), then the Puiseux expansion gives 

f l  (x) N cmo (z - z p / "  mo > 0 

thus identifying mol. as tlie critical exponent (mo is the first non-zero term in the 
Puiseux expansion). Thermodynamic functioiis which diverge as 2 4 E, arise from 
case (i) ,  the roots of Pk(x) = 0. Let 2, be a root, and shift it to  the origin. Thus 
G(f,O) = 0 now has only n < 6 roots. These are either algebraic or regular as 
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discussed above. There remain the k - n roots that tend to  infinity as z --+ 0. These 
are analysed as follows. Let g = l /f ,  and form 

F ( 9 ,  .) = s"(l/g, 2) 

then F ( g ,  0) = 0 has IC - n roots which tend to  zero as t -+ 0. These roots can then 
be analysed in the same way as those above, leading to  a Puiseux expansion for g(z). 
If the first non-zero term in the expansion of a tc-cycle of g(t) is c m o x m ~ l n 1  then as 
g = l/f,  the series for g(z) may be inverted giving 

M 

m=O 

This gives an expansion for thermodynamic functions behaving like 

and hence the critical exponent is -mol%. 
Thus to  obtain the critical exponent it is necessary to  obtain a t  least the first 

(non-zero) term in the Puiseux expansion. There exists a well defined algorithm for 
obtaining the Puiseux expansion which uses 'Newton's diagram' [13]. The algorithm is 
well suited to  programming. In this way each algebraic approximant may be analysed. 
The Puiseux expansion can also be developed to arbitrary order, which can be used to 
predict coefficients of the original series expansion and so lead to  a conjectured exact 
solution (as explained above). 

In addition, if the cycle index of all the singular points can be determined, it is 
then possible to  calculate the genus of the Riemann surface on which the algebraic 
function is single valued. This is of interest as it tells us something about the type 
of automorphic functions which uniformize the algebraic function. These are the 
functions which arise naturally in exact solutions [5]. 

We believe that  the method of algebraic approximants is a potentially powerful 
series analysis tool for the study of systems believed to  have rational critical expo- 
nents. Many two-dimensional systems exhibit this property, as do systems above their 
critical dimensionality. (Systems a t  their critical dimensionality usually have conflu- 
ent logarithmic singularities, which in most cases therefore lie outside the framework 
of the algebraic approximants we have considered.) A further development of these 
ideas is the generalization of (1) to  a two (or more) variable version, of the form 

1: 

m=O 

which will then allow, in principle, for the study of multicritical points, and constitutes 
a particularization of the PDA method for multivariable functions. In parallel with this 
numerical and theoretical work, we propose to study known exact solutions with a view 
to categorizing them according to  the underlying algebraic equation and to  determine 
their genus. 
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